Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 775
Filtrar
1.
J Phys Chem Lett ; 15(13): 3502-3508, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38517341

RESUMO

RNA ATPases/helicases remodel substrate RNA-protein complexes in distinct ways. The different RNA ATPases/helicases, taking part in the spliceosome complex, reshape the RNA/RNA-protein contacts to enable premature-mRNA splicing. Among them, the bad response to refrigeration 2 (Brr2) helicase promotes U4/U6 small nuclear (sn)RNA unwinding via ATP-driven translocation of the U4 snRNA strand, thus playing a pivotal role during the activation, catalytic, and disassembly phases of splicing. The plastic Brr2 architecture consists of an enzymatically active N-terminal cassette (N-cassette) and a structurally similar but inactive C-terminal cassette (C-cassette). The C-cassette, along with other allosteric effectors and regulators, tightly and timely controls Brr2's function via an elusive mechanism. Here, microsecond-long molecular dynamics simulations, dynamical network theory, and community network analysis are combined to elucidate how allosteric effectors/regulators modulate the Brr2 function. We unexpectedly reveal that U4 snRNA itself acts as an allosteric regulator, amplifying the cross-talk of distal Brr2 domains and triggering a conformational reorganization of the protein. Our findings offer fundamental understanding into Brr2's mechanism of action and broaden our knowledge on the sophisticated regulatory mechanisms by which spliceosome ATPases/helicases control gene expression. This includes their allosteric regulation exerted by client RNA strands, a mechanism that may be broadly applicable to other RNA-dependent ATPases/helicases.


Assuntos
Ribonucleoproteínas Nucleares Pequenas , Spliceossomos , Humanos , Adenosina Trifosfatases/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , RNA/metabolismo , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo
2.
Biochem Biophys Res Commun ; 703: 149682, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38377942

RESUMO

UAP56 and URH49 are closely related RNA helicases that function in selective mRNA processing and export pathways to fine-tune gene expression through distinct complex formations. The complex formation of UAP56 and URH49 is believed to play a crucial role in regulating target mRNAs. However, the mechanisms underlying this complex formation have not been fully elucidated. Here we identified the regions essential for the complex formation of both helicases. The terminal regions of UAP56 and the C-terminal region of URH49 were indispensable for their respective complex formation. Further analysis revealed that a specific amino acid at the C-terminus of UAP56 is critical for its complex formation. Alanine substitution of this amino acid impairs its complex formation and subsequently affected its mRNA processing and export activity. Our study provides a deeper understanding of the basis for the complex formation between UAP56 and URH49.


Assuntos
RNA Helicases DEAD-box , RNA Helicases , Processamento Pós-Transcricional do RNA , Aminoácidos/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Humanos , RNA Helicases/química , RNA Helicases/metabolismo
3.
J Phys Chem B ; 128(2): 492-503, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38175211

RESUMO

In response to the emergence of COVID-19, caused by SARS-CoV-2, there has been a growing interest in understanding the functional mechanisms of the viral proteins to aid in the development of new therapeutics. Nonstructural protein 13 (nsp13) helicase is an attractive target for antivirals because it is essential for viral replication and has a low mutation rate, yet the structural mechanisms by which this enzyme binds and hydrolyzes ATP to cause unidirectional RNA translocation remain elusive. Using Gaussian accelerated molecular dynamics (GaMD), we generated comprehensive conformational ensembles of all substrate states along the ATP-dependent cycle. Shape-GMM clustering of the protein yields four protein conformations that describe an opening and closing of both the ATP pocket and the RNA cleft that is achieved through a combination of conformational selection and induction along the ATP hydrolysis cycle. Furthermore, three protein-RNA conformations are observed that implicate motifs Ia, IV, and V as playing a pivotal role in an ATP-dependent inchworm translocation mechanism. Finally, based on a linear discriminant analysis of protein conformations, we identify L405 as a pivotal residue for the opening and closing mechanism and propose a L405D mutation as a way to disrupt translocation. This research enhances our understanding of nsp13's role in viral replication and could contribute to the development of antiviral strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Hidrólise , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas não Estruturais Virais/química , Trifosfato de Adenosina/metabolismo , RNA
4.
Biochemistry ; 63(1): 159-170, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38085597

RESUMO

Mtr4 is an essential RNA helicase involved in nuclear RNA processing and degradation and is a member of the Ski2-like helicase family. Ski2-like helicases share a common core architecture that includes two RecA-like domains, a winged helix, and a helical bundle (HB) domain. In Mtr4, a short C-terminal tail immediately follows the HB domain and is positioned at the interface of the RecA-like domains. The tail ends with a SLYΦ sequence motif that is highly conserved in a subset of Ski2-like helicases. Here, we show that this sequence is critical for Mtr4 function. Mutations in the C-terminus result in decreased RNA unwinding activity. Mtr4 is a key activator of the RNA exosome complex, and mutations in the SLYΦ motif produce a slow growth phenotype when combined with a partial exosome defect in S. cerevisiae, suggesting an important role of the C-terminus of Mtr4 and the RNA exosome. We further demonstrate that C-terminal mutations impair RNA degradation activity by the major RNA exosome nuclease Rrp44 in vitro. These data demonstrate a role for the Mtr4 C-terminus in regulating helicase activity and coordinating Mtr4-exosome interactions.


Assuntos
Exossomos , Proteínas de Saccharomyces cerevisiae , Exossomos/genética , Exossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/química , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases/química , DNA Helicases/metabolismo
5.
Mol Cell ; 83(20): 3692-3706.e5, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37832548

RESUMO

The senataxin (SETX, Sen1 in yeasts) RNA-DNA hybrid resolving helicase regulates multiple nuclear transactions, including DNA replication, transcription, and DNA repair, but the molecular basis for Sen1 activities is ill defined. Here, Sen1 cryoelectron microscopy (cryo-EM) reconstructions reveal an elongated inchworm-like architecture. Sen1 is composed of an amino terminal helical repeat Sen1 N-terminal (Sen1N) regulatory domain that is flexibly linked to its C-terminal SF1B helicase motor core (Sen1Hel) via an intrinsically disordered tether. In an autoinhibited state, the Sen1Sen1N domain regulates substrate engagement by promoting occlusion of the RNA substrate-binding cleft. The X-ray structure of an activated Sen1Hel engaging single-stranded RNA and ADP-SO4 shows that the enzyme encircles RNA and implicates a single-nucleotide power stroke in the Sen1 RNA translocation mechanism. Together, our data unveil dynamic protein-protein and protein-RNA interfaces underpinning helicase regulation and inactivation of human SETX activity by RNA-binding-deficient mutants in ataxia with oculomotor apraxia 2 neurodegenerative disease.


Assuntos
Doenças Neurodegenerativas , RNA , Humanos , RNA/genética , Microscopia Crioeletrônica , RNA Helicases/genética , RNA Helicases/química , Enzimas Multifuncionais/genética , DNA/genética , Homeostase , DNA Helicases/genética
6.
Nucleic Acids Res ; 51(17): 9279-9293, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37602378

RESUMO

Proteins containing a RNB domain, originally identified in Escherichia coli RNase II, are widely present throughout the tree of life. Many RNB proteins have 3'-5' exoribonucleolytic activity but some have lost catalytic activity during evolution. Database searches identified a new RNB domain-containing protein in human: HELZ2. Analysis of genomic and expression data combined with evolutionary information suggested that the human HELZ2 protein is produced from an unforeseen non-canonical initiation codon in Hominidae. This unusual property was confirmed experimentally, extending the human protein by 247 residues. Human HELZ2 was further shown to be an active ribonuclease despite the substitution of a key residue in its catalytic center. HELZ2 RNase activity is lost in cells from some cancer patients as a result of somatic mutations. HELZ2 harbors also two RNA helicase domains and several zinc fingers and its expression is induced by interferon treatment. We demonstrate that HELZ2 is able to degrade structured RNAs through the coordinated ATP-dependent displacement of duplex RNA mediated by its RNA helicase domains and its 3'-5' ribonucleolytic action. The expression characteristics and biochemical properties of HELZ2 support a role for this factor in response to viruses and/or mobile elements.


Assuntos
RNA Helicases , Humanos , Códon de Iniciação , Exorribonucleases/metabolismo , Interferons/genética , RNA/metabolismo , RNA Helicases/química , RNA Helicases/genética
7.
J Am Chem Soc ; 145(20): 11056-11066, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37159397

RESUMO

Stress granules (SGs) and processing-bodies (PBs, P-bodies) are ubiquitous and widely studied ribonucleoprotein (RNP) granules involved in cellular stress response, viral infection, and the tumor microenvironment. While proteomic and transcriptomic investigations of SGs and PBs have provided insights into molecular composition, chemical tools to probe and modulate RNP granules remain lacking. Herein, we combine an immunofluorescence (IF)-based phenotypic screen with chemoproteomics to identify sulfonyl-triazoles (SuTEx) capable of preventing or inducing SG and PB formation through liganding of tyrosine (Tyr) and lysine (Lys) sites in stressed cells. Liganded sites were enriched for RNA-binding and protein-protein interaction (PPI) domains, including several sites found in RNP granule-forming proteins. Among these, we functionally validate G3BP1 Y40, located in the NTF2 dimerization domain, as a ligandable site that can disrupt arsenite-induced SG formation in cells. In summary, we present a chemical strategy for the systematic discovery of condensate-modulating covalent small molecules.


Assuntos
Grânulos Citoplasmáticos , DNA Helicases , DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteômica , RNA Helicases/química
8.
Biol Chem ; 404(8-9): 781-789, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37233600

RESUMO

During their biogenesis, the ribosomal subunits undergo numerous structural and compositional changes to achieve their final architecture. RNA helicases are a key driving force of such remodelling events but deciphering their particular functions has long been challenging due to lack of knowledge of their molecular functions and RNA substrates. Advances in the biochemical characterisation of RNA helicase activities together with new insights into RNA helicase binding sites on pre-ribosomes and structural snapshots of pre-ribosomal complexes containing RNA helicases now open the door to a deeper understanding of precisely how different RNA helicases contribute to ribosomal subunit maturation.


Assuntos
RNA Helicases , Proteínas de Saccharomyces cerevisiae , RNA Helicases/química , Ribossomos/metabolismo , Subunidades Ribossômicas/metabolismo , RNA/metabolismo , Sítios de Ligação , RNA Ribossômico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
J Chem Inf Model ; 63(11): 3474-3485, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37222704

RESUMO

UPF1 is a core protein in the nonsense mRNA degradation (NMD) surveillance pathway that degrades aberrant mRNA. UPF1 has both ATPase and RNA helicase activities, but it exhibits mutually exclusive binding of ATP and RNA. This suggests intricate allosteric coupling between ATP and RNA binding that remains unresolved. In this study, we used molecular dynamics simulations and dynamic network analyses to probe the dynamics and free energy landscapes covering UPF1 crystal structures resolved in the Apo state, the ATP bound state, and the ATP-RNA bound (catalytic transition) state. Free energy calculations show that in the presence of ATP and RNA, the transition from the Apo state to the ATP bound state is an uphill process but becomes a downhill process when transitioning to the catalytic transition state. Allostery potential analyses reveal that the Apo and catalytic transition states are mutually allosterically activated toward each other, reflecting the intrinsic ATPase function of UPF1. The Apo state is also allosterically activated toward the ATP bound state. However, binding ATP alone leads to an allosterically trapped state that is difficult to revert to either the Apo or the catalytic transition state. The high allostery potential of Apo UPF1 toward different states results in a "first come, first served" mechanism that requires the synergistic binding of ATP and RNA to drive the ATPase cycle. Our results reconcile UPF1's ATPase and RNA helicase activities within an allostery framework and may apply to other SF1 helicases, as we demonstrate that UPF1's allostery signaling pathways prefer the RecA1 domain over the equally fold-conserved RecA2 domain, and this preference coincides with higher sequence conservation in the RecA1 domain across typical human SF1 helicases.


Assuntos
Adenosina Trifosfatases , RNA Helicases , Humanos , RNA Helicases/química , RNA/metabolismo , RNA Mensageiro/metabolismo , Trifosfato de Adenosina/metabolismo , Transativadores/química , Transativadores/genética , Transativadores/metabolismo
10.
Science ; 379(6637): 1149-1156, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36927025

RESUMO

Therapeutic manipulation of the gut microbiota holds great potential for human health. The mechanisms bacteria use to colonize the gut therefore present valuable targets for clinical intervention. We now report that bacteria use phase separation to enhance fitness in the mammalian gut. We establish that the intrinsically disordered region (IDR) of the broadly and highly conserved transcription termination factor Rho is necessary and sufficient for phase separation in vivo and in vitro in the human commensal Bacteroides thetaiotaomicron. Phase separation increases transcription termination by Rho in an IDR-dependent manner. Moreover, the IDR is critical for gene regulation in the gut. Our findings expose phase separation as vital for host-commensal bacteria interactions and relevant for novel clinical applications.


Assuntos
Proteínas de Bactérias , Bacteroides thetaiotaomicron , Microbioma Gastrointestinal , Aptidão Genética , Proteínas Intrinsicamente Desordenadas , RNA Helicases , Fator Rho , Animais , Humanos , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/fisiologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/fisiologia , Fator Rho/química , Fator Rho/genética , Fator Rho/fisiologia , Terminação da Transcrição Genética , Domínios Proteicos , Camundongos , Vida Livre de Germes , Camundongos Endogâmicos C57BL , Masculino , Feminino
11.
Acta Crystallogr D Struct Biol ; 79(Pt 4): 304-317, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36974964

RESUMO

The conversion of hits to leads in drug discovery involves the elaboration of chemical core structures to increase their potency. In fragment-based drug discovery, low-molecular-weight compounds are tested for protein binding and are subsequently modified, with the tacit assumption that the binding mode of the original hit will be conserved among the derivatives. However, deviations from binding mode conservation are rather frequently observed, but potential causes of these alterations remain incompletely understood. Here, two crystal forms of the spliceosomal RNA helicase BRR2 were employed as a test case to explore the consequences of conformational changes in the target protein on the binding behaviour of fragment derivatives. The initial fragment, sulfaguanidine, bound at the interface between the two helicase cassettes of BRR2 in one crystal form. Second-generation compounds devised by structure-guided docking were probed for their binding to BRR2 in a second crystal form, in which the original fragment-binding site was altered due to a conformational change. While some of the second-generation compounds retained binding to parts of the original site, others changed to different binding pockets of the protein. A structural bioinformatics analysis revealed that the fragment-binding sites correspond to predicted binding hot spots, which strongly depend on the protein conformation. This case study offers an example of extensive binding-mode changes during hit derivatization, which are likely to occur as a consequence of multiple binding hot spots, some of which are sensitive to the flexibility of the protein.


Assuntos
RNA Helicases , Spliceossomos , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , Ligantes , Spliceossomos/genética , Spliceossomos/metabolismo , DNA Helicases/metabolismo , Conformação Proteica , Sítios de Ligação , Ligação Proteica
12.
Mol Divers ; 27(4): 1689-1701, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36063275

RESUMO

Despite the various research efforts towards the drug discovery program for Zika virus treatment, no antiviral drugs or vaccines have yet been discovered. The spread of the mosquito vector and ZIKV infection exposure is expected to accelerate globally due to continuing global travel. The NS3-Hel is a non-structural protein part and involved in different functions such as polyprotein processing, genome replication, etc. It makes an NS3-Hel protein an attractive target for designing novel drugs for ZIKV treatment. This investigation identifies the novel, potent ZIKV inhibitors by virtual screening and elucidates the binding pattern using molecular docking and molecular dynamics simulation studies. The molecular dynamics simulation results indicate dynamic stability between protein and ligand complexes, and the structures keep significantly unchanged at the binding site during the simulation period. All inhibitors found within the acceptable range having drug-likeness properties. The synthetic feasibility score suggests that all screened inhibitors can be easily synthesizable. Therefore, possible inhibitors obtained from this study can be considered a potential inhibitor for NS3 Hel, and further, it could be provided as a lead for drug development.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Humanos , Zika virus/química , Zika virus/metabolismo , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/metabolismo , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Proteínas não Estruturais Virais , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , Antivirais/química , Inibidores de Proteases/farmacologia
13.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499049

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the pandemic that broke out in 2020 and continues to be the cause of massive global upheaval. Coronaviruses are positive-strand RNA viruses with a genome of ~30 kb. The genome is replicated and transcribed by RNA-dependent RNA polymerase together with accessory factors. One of the latter is the protein helicase (NSP13), which is essential for viral replication. The recently solved helicase structure revealed a tertiary structure composed of five domains. Here, we investigated NSP13 from a structural point of view, comparing its RNA-free form with the RNA-engaged form by using atomistic molecular dynamics (MD) simulations at the microsecond timescale. Structural analyses revealed conformational changes that provide insights into the contribution of the different domains, identifying the residues responsible for domain-domain interactions in both observed forms. The RNA-free system appears to be more flexible than the RNA-engaged form. This result underlies the stabilizing role of the nucleic acid and the functional core role of these domains.


Assuntos
RNA Helicases , SARS-CoV-2 , RNA Helicases/química , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/química , RNA Viral/química
14.
Inorg Chem ; 61(39): 15664-15677, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36125417

RESUMO

The identification of novel therapeutics against the pandemic SARS-CoV-2 infection is an indispensable new address of current scientific research. In the search for anti-SARS-CoV-2 agents as alternatives to the vaccine or immune therapeutics whose efficacy naturally degrades with the occurrence of new variants, the salts of Bi3+ have been found to decrease the activity of the Zn2+-dependent non-structural protein 13 (nsp13) helicase, a key component of the SARS-CoV-2 molecular tool kit. Here, we present a multilevel computational investigation based on the articulation of DFT calculations, classical MD simulations, and MIF analyses, focused on the examination of the effects of Bi3+/Zn2+ exchange on the structure and molecular interaction features of the nsp13 protein. Our calculations confirmed that Bi3+ ions can replace Zn2+ in the zinc-finger metal centers and cause slight but appreciable structural modifications in the zinc-binding domain of nsp13. Nevertheless, by employing an in-house-developed ATOMIF tool, we evidenced that such a Bi3+/Zn2+ exchange may decrease the extension of a specific hydrophobic portion of nsp13, responsible for the interaction with the nsp12 protein. The present study provides for a detailed, atomistic insight into the potential anti-SARS-CoV-2 activity of Bi3+ and, more generally, evidences the hampering of the nsp13-nsp12 interaction as a plausible therapeutic strategy.


Assuntos
COVID-19 , SARS-CoV-2 , Bismuto , Humanos , Íons , RNA Helicases/química , RNA Helicases/metabolismo , Sais , Zinco
15.
Antiviral Res ; 206: 105389, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35985407

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) helicase NSP13 plays a conserved role in the replication of coronaviruses and has been identified as an ideal target for the development of antiviral drugs against SARS-CoV-2. Here, we identify a novel NSP13 helicase inhibitor punicalagin (PUG) through high-throughput screening. Surface plasmon resonance (SPR)-based analysis and molecular docking calculation reveal that PUG directly binds NSP13 on the interface of domains 1A and 2A, with a KD value of 21.6 nM. Further biochemical and structural analyses suggest that PUG inhibits NSP13 on ATP hydrolysis and prevents it binding to DNA substrates. Finally, the antiviral studies show that PUG effectively suppresses the SARS-CoV-2 replication in A549-ACE2 and Vero cells, with EC50 values of 347 nM and 196 nM, respectively. Our work demonstrates the potential application of PUG in the treatment of coronavirus disease 2019 (COVID-19) and identifies an allosteric inhibition mechanism for future drug design targeting the viral helicases.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Antivirais/química , Antivirais/farmacologia , Chlorocebus aethiops , DNA Helicases/metabolismo , Humanos , Taninos Hidrolisáveis , Simulação de Acoplamento Molecular , RNA Helicases/química , Células Vero
16.
Methods Enzymol ; 673: 425-451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965015

RESUMO

The Ski2-like RNA helicase, Mtr4, plays a central role in nuclear RNA surveillance pathways by delivering targeted substrates to the RNA exosome for processing or degradation. RNA target selection is accomplished by a variety of Mtr4-mediated protein complexes. In S. cerevisiae, the Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) complex prepares substrates for exosomal decay through the combined action of polyadenylation and helicase activities. Biophysical and structural studies of Mtr4 and TRAMP require highly purified protein components. Here, we describe robust protocols for obtaining large quantities of pure, active Mtr4 and Trf4-Air2 from S. cerevisiae. The proteins are recombinantly expressed in E. coli and purified using affinity, ion exchange, hydrophobic exchange and size exclusion chromatography. Care is taken to remove nuclease contamination during the prep. Assembly of TRAMP is achieved by combining individually purified Mtr4 and Trf4-Air2. We further describe a strand displacement assay to characterize Mtr4 helicase unwinding activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Escherichia coli/genética , Escherichia coli/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , RNA Helicases/química , RNA Helicases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
Biophys J ; 121(24): 4900-4908, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-35923103

RESUMO

Zika virus (ZIKV) is a positive-sense single-stranded RNA virus that infects humans and can cause birth defects and neurological disorders. Its non-structural protein 3 (NS3) contains a protease domain and a helicase domain, both of which play essential roles during the viral life cycle. However, it has been shown that ZIKV NS3 has an inherently weak helicase activity, making it unable to unwind long RNA duplexes alone. How this activity is stimulated to process the viral genome and whether the two domains of NS3 are functionally coupled remain unclear. Here, we used optical tweezers to characterize the RNA-unwinding properties of ZIKV NS3-including its processivity, velocity, and step size-at the single-molecule level. We found that external forces that weaken the stability of the duplex RNA substrate significantly enhance the helicase activity of ZIKV NS3. On the other hand, we showed that the protease domain increases the binding affinity of NS3 to RNA but has only a minor effect on unwinding per se. Our findings suggest that the ZIKV NS3 helicase is activated on demand in the context of viral replication, a paradigm that may be generalizable to other flaviviruses.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , RNA Helicases/química , Zika virus/genética , Zika virus/metabolismo , Proteínas não Estruturais Virais/genética , DNA Helicases , Peptídeo Hidrolases/química , RNA
18.
J Chem Inf Model ; 62(16): 3800-3813, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35950997

RESUMO

Dengue virus, a flavivirus that causes dengue shock syndrome and dengue hemorrhagic fever, is currently prevalent worldwide. A two-component protease (NS2B-NS3) is essential for maturation, representing an important target for designing anti-flavivirus drugs. Previously, consideration has been centered on developing active-site inhibitors of NS2B-NS3pro. However, the flat and charged nature of its active site renders difficulties in developing inhibitors, suggesting an alternative strategy for identifying allosteric inhibitors. The allosterically sensitive site of the dengue protease is located near Ala125, between the 120s loop and 150s loop. Using atomistic molecular dynamics simulations, we have explored the protease's conformational dynamics upon binding of an allosteric inhibitor. Furthermore, characterization of the inherent flexible loops (71-75s loop, 120s loop, and 150s loop) is carried out for allosteric-inhibitor-bound wild-type and mutant A125C variants and a comparison is performed with its unbound state to extract the structural changes describing the inactive state of the protease. Our study reveals that compared to the unliganded system, the inhibitor-bound system shows large structural changes in the 120s loop and 150s loop in contrast to the rigid 71-75s loop. The unliganded system shows a closed-state pocket in contrast to the open state for the wild-type complex that locks the protease into the open and inactive-state conformations. However, the mutant complex fluctuates between open and closed states. Also, we tried to see how mutation and binding of an allosteric inhibitor perturb the connectivity in a protein structure network (PSN) at contact levels. Altogether, our study reveals the mechanism of conformational rearrangements of loops at the molecular level, locking the protein in an inactive conformation, which may be useful for developing allosteric inhibitors.


Assuntos
Vírus da Dengue , Dengue , Flavivirus , Proteínas não Estruturais Virais , Domínio Catalítico , Dengue/metabolismo , Vírus da Dengue/metabolismo , Flavivirus/metabolismo , Humanos , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , RNA Helicases/química , Serina Endopeptidases/química , Proteínas não Estruturais Virais/química
19.
Fish Shellfish Immunol ; 128: 238-245, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35940537

RESUMO

The LGP2 (Laboratory of Genetics and Physiology 2) protein is a member of the retinoic acid-inducible gene I (RIG-I)-like receptor (RLRs) family, which is a class of antiviral pattern recognition receptors located in the cytoplasm. However, few studies have investigated the function of LGP2 in invertebrates. In this study, the complete coding sequence of the LGP2 gene of the Pacific oyster, Crassostrea gigas, was obtained and named CgLGP2-like. Sequence analysis revealed that CgLGP2-like encodes 803 amino acids, and the encoded protein contains a DEXDc, HELICc, and C-terminal regulatory domains. Multiple sequence alignment demonstrated that the sequences of these key protein functional domains were relatively conserved. Phylogenetic analysis revealed that CgLGP2-like was a new member of the animal LGP2 family. Quantitative real-time PCR results showed that CgLGP2-like mRNA was expressed in all tested oyster tissues, with the highest expression observed in the labial palpus and digestive glands. CgLGP2-like expression in gill tissues was significantly induced after the poly(I:C) challenge. Furthermore, multiple IRF and NF-κB binding sites were identified in the CgLGP2-like promoter region, which may be one of the reasons why CgLGP2-like responds to poly(I:C) stimulation. Finally, the results of dual-luciferase reporter gene assays revealed that overexpression of CgLGP2-like may have a regulatory effect on the human IFN, AP-1, and oyster CgIL-17 genes in HEK293T cells. Overall, our results preliminarily elucidate the immune functions of invertebrate LGP2 protein and provide valuable information for the development of comparative immunology.


Assuntos
Crassostrea , RNA Helicases/genética , Aminoácidos/metabolismo , Animais , Regulação da Expressão Gênica , Células HEK293 , Humanos , Imunidade Inata , Luciferases/metabolismo , NF-kappa B/metabolismo , Filogenia , Poli I-C/farmacologia , RNA Helicases/química , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , Receptores de Reconhecimento de Padrão/genética , Fator de Transcrição AP-1/genética , Tretinoína/metabolismo
20.
Molecules ; 27(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35807364

RESUMO

Dengue virus (DENV) is a danger to more than 400 million people in the world, and there is no specific treatment. Thus, there is an urgent need to develop an effective method to combat this pathology. NS2B/NS3 protease is an important biological target due it being necessary for viral replication and the fact that it promotes the spread of the infection. Thus, this study aimed to design DENV NS2B/NS3pro allosteric inhibitors from a matrix compound. The search was conducted using the Swiss Similarity tool. The compounds were subjected to molecular docking calculations, molecular dynamics simulations (MD) and free energy calculations. The molecular docking results showed that two compounds, ZINC000001680989 and ZINC000001679427, were promising and performed important hydrogen interactions with the Asn152, Leu149 and Ala164 residues, showing the same interactions obtained in the literature. In the MD, the results indicated that five residues, Lys74, Leu76, Asn152, Leu149 and Ala166, contribute to the stability of the ligand at the allosteric site for all of the simulated systems. Hydrophobic, electrostatic and van der Waals interactions had significant effects on binding affinity. Physicochemical properties, lipophilicity, water solubility, pharmacokinetics, druglikeness and medicinal chemistry were evaluated for four compounds that were more promising, showed negative indices for the potential penetration of the Blood Brain Barrier and expressed high human intestinal absorption, indicating a low risk of central nervous system depression or drowsiness as the the side effects. The compound ZINC000006694490 exhibited an alert with a plausible level of toxicity for the purine base chemical moiety, indicating hepatotoxicity and chromosome damage in vivo in mouse, rat and human organisms. All of the compounds selected in this study showed a synthetic accessibility (SA) score lower than 4, suggesting the ease of new syntheses. The results corroborate with other studies in the literature, and the computational approach used here can contribute to the discovery of new and potent anti-dengue agents.


Assuntos
Vírus da Dengue , Inibidores de Proteases , Proteínas não Estruturais Virais , Animais , Antivirais/química , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/enzimologia , Humanos , Camundongos , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , RNA Helicases/antagonistas & inibidores , RNA Helicases/química , Ratos , Serina Endopeptidases/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...